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LETTER TO THE EDITOR 

Similarity solutions of the Einstein and Einstein-Maxwell 
equations 

Elliot Fischer'r 
California Institute of Technology, Pasadena, CA 91 125, USA 

Received 10 January 1980 

Abstract. Exact solutions of the equations governing vacuum cylindrical gravitational wave 
spacetimes and colliding plane electromagnetic and plane gravitational wave spacetimes are 
presented. Both solutions are found by using the geometric technique of Harrison and 
Estabrook to find appropriate similarity variables to reduce partial differential equations to 
ordinary differential equations. One of the solutions is transformed into a solution of the 
Ernst equations. 

The problem of finding exact solutions to the Einstein or Einstein-Maxwell equations 
for various axisymmetric fields has received much attention in recent years (see 
Kinnersley 1975, Bell and Szekeres 1974). Some of these physically different problems 
turn out to possess the same field equations, as shown in Harrison (1968), Fischer 
(1977) and Catenacci and Alonso (1976). In the following, it is shown how a systematic 
approach to finding similarity variables for these field equations due to Harrison and 
Estabrook (1971) leads to exact solutions. 

The equations considered are 

Equations (1) are both the Einstein equations for cylindrical gravitational waves 
(Kinnersley 1975) (in which case Q = -U +log p and R are metric coefficients) and the 
Einstein-Maxwell equations for colliding plane gravitational and plane electromag- 
netic waves (Bell and Szekeres 1974) (in which case U is a metric coefficient and R is an 
electromagnetic potential). p and 7 are the cylindrical radial and time coordinates 
respectively. 

For a discussion on writing differential equations as differential forms, the reader is 
referred to Harrison and Estabrook (1971), where the concepts of isovector and 
generalised isovector are discussed. For present purposes all that need be known is that 
an isovector or generalised isovector can be used to find functional forms for the 
dependent variables of a set of partial differential equations that will reduce the number 
of independent variables by one. The geometric techniques are related to the classical 
techniques discussed, for example, in Bluman and Cole (1974). 
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For example, isovector 2 of Harrison and Estabrook leads to the functional form 

where 77 = p / r .  Substitution of equations (2) into equations (1) yields the ordinary 
differential equations 

~ ” ( 7 7 ~ -  1) + ~ ’ ( 2 7 7  - 1/77) = e-2UR’2(1 - 77’1, 

(Rlr(v2- 1)+R’(277 - 1/77) =2U’n’(772- l), 

(3a) 

( 3 b )  

where a prime denotes differentiation with respect to 77. To solve equation (3b), rewrite 
it as 

and integrate to obtain 

W =  c1 e2u/(72- I)”’, (4) 

where C1 is a constant of integration. Substituting equation (4) into equation (3a) 
yields 

( 5 )  2u 2 ~ ’ ’ ( 7 ~ -  q4) + ~ ’ ( 7 7  -2773) = e 

~ ” ( 7 7 ’ -  q4) = C: eZu, 

c1, 
which may be multiplied by U’ and integrated to yield 

(6 )  

where we choose the constant of integration to be zero to obtain an explicit solution as 
follows. 

Integration of equation (6 )  yields 

e-u = C1 sech-’ 7 + C2, (7a) 

where C2 is another integration constant. Equation (4) then gives fl as a quadrature, 

where C3 is a third integration constant. Equations (7) comprise an exact solution of (1) 
and may be used to represent the appropriate spacetimes. Similarly, the generalised 
isovector found by Fischer (1977) leads to the functional form 

U = U ( p 2 - T 2 )  = U(T) ,  @a)  

(8b) n = n ( p 2  - 2) = R(T). 

Substitution of equation (8) into equation (1) yields 

277U’’+3U’= -277 e-2Ufl’2,  

277W+ 3n’ = 4770’U’. 

Equation (9b) integrates to 
= c1 e2u7-2’3, 
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where C1 is an integration constant. Substituting equation (10) into equation (9a) 
yields 

2 q 3 U f f + 3 q 2 U ’ =  -2C: e-2U, 

which may be multiplied by U’ and integrated to yield 
2 2u q3uf2 = -c1 e + c2, 

where C2 is another constant of integration. This may be rewritten as 

dU/(C2- C: e2u)1/2 = 77-3/2 dq. 

We see that C2 must be chosen so that C2> C: e2? Integration then yields 

eZu = (C2/C:){1 - 4  ~ o t h ~ [ 6 ( 2 q - ~ ’ ~ +  C3)]}, ( I l a )  
where CS is another integration constant. Equation (10) then gives R as a quadrature, 

where C, is a fourth integration constant. Equations (11) yield another Einstein or 
Einstein-Maxwell solution. 

If we set T = iZ, equations (1) become 

which are the Ernst equations for the external field of an axially symmetric, rotating 
body where R is the ‘twist’ potential, as shown in Kinnersley (1975). The functional 
form, equation (8), becomes 

U = U(p2 + Z 2 )  = U ( q ) ,  

R = R(p2 + Z 2 )  = R(q), 

which is of the same functional form as the Curzon (1924) solution. A solution of 
equations (12) is equations (1 1) with the similarity variable q = p 2  + Z 2 .  This solution is 
in fact asymptotically flat, since as q +. CQ we see from equation ( l l a )  that 

eZU+(C2/C:)(1-4 c o t h 2 G ) .  

The integral for Cl, equation ( l l b ) ,  also converges as 77 +CO, since for large (+ the 
integrand behaves like C T - ” ~ .  The constants C1, C2, C3 may be chosen so that eZLI + 1 
as q +CO. Since the potential fi is only determined to within an additive constant 
(Kinnersley 1975), we may use this freedom to give R + 0 as q + 00. This asymptotically 
flat solution represents the external gravitational field of a stationary, axially symmetric, 
rotating body. 

The author appreciates very helpful discussions with Dr Frank B Estabrook. 
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